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A mathematical model for convective diffusion to the so-called line electrode was solved by combi-
nation of the analytical and numerical approaches. All terms of the diffusion equation were respected.
A semiempirical formula was derived, extending appreciably its applicability with respect to the de-
cisive physical and geometric parameters.

An electrode having the shape of a narrow segment of an annulus of a rotational cylin-
der, the so-called line electrode, was developed in 1967 as a means for various physico-
chemical measurements1. Analytical mathematical methods were applied, after a
considerable simplification, to solve the boundary problem for convective diffusion,
and the solution was used to derive an approximate formula for the diffusion flow to
the electrode. The validity of the formula was tested across a range of standard values
of the decisive physical parameters, and a relatively good agreement was found. It was
a shortcoming of the work (due to the absence of appropriate computer techniques) that
the range of validity of the diffusion flow formula was not specified precisely enough
and that no more precise formula for a wider range of the parameters was derived.
Therefore we returned now to the problem of the line electrode and, by combining
suitable analytical and numerical procedures, we solved a mathematical model describ-
ing the convective diffusion process in the environment of the line electrode. In con-
trast to the paper1 we retained all terms in the partial differential equation for the
steady-state convective diffusion, and approximated more closely the exact boundary
conditions. The outcome was formula (22), whose range of validity covers less standard
values of some physical or geometrical parameters as well and also confirms a good
applicability of the formula1 to the values then used.

Analytical Solution of the Mathematical Model

The steady-state convective diffusion process in the environment of the line electrode
is described, in the polar coordinates r, ϕ, by the partial differential equation1
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r−1vϕ ∂c ⁄ ∂ϕ   =   D (∂2c ⁄ ∂r2  +  r−1∂c ⁄ ∂r  +  r−2∂2c ⁄ ∂ϕ2) , (1)

where (ref.2)

vϕ   =   ω r (1 − a2r−2) ⁄ (1 − a2b−2) (2)

with the boundary conditions

c(a,ϕ)  =  0     for     ϕ ∈ 〈 0,
m
a

〉 (3a)

∂c ⁄ ∂r(a,ϕ)  =  0     for     ϕ ∈ 〈 m
a

,2π〉 (3b)

∂c ⁄ ∂r(b,ϕ)  =  0     for     ϕ ∈ 〈 0,2π〉 . (4)

In the equations, c is the solution concentration, D is the solute diffusion coefficient,
vϕ is the tangential velocity of flow of the solution, ω is the angular velocity, a and b
are the radii of the inner and outer cylinders, respectively, and m is the line electrode
width.

The boundary problem so formulated has a single solution, c(r,ϕ) = 0, for r ∈  〈a,b〉 ,
ϕ ∈  〈0,2π〉. Physical explanation of this consists in the fact that we assumed an infi-
nitely long line electrode. In reality, the electrode has a finite length. In this case it can
be proved that the solution of the boundary problem for the limiting case of b → ∞ is
non-zero. For reasons which are physically acceptable we change the boundary condi-
tion (4) to

lim
b → ∞

 c(b,ϕ)  =  c0  ≠  0 . (5)

Introducing the dimensionless variables

y  =  
r − a

a
 ,     x  =  

a
m

 ϕ ,     C  =  
c
c0

(6)

we obtain Eq. (1) in the form
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B (1  −  (1 + y)−2) ∂C ⁄ ∂x   =   ∂2C ⁄ ∂y2  +  (1 + y)−1 ∂C ⁄ ∂y  +

+  A (1 + y)−2 ∂2C ⁄ ∂x2 , (7)

where

A  =  
a2

m2 ,     B  =  
a
m

 ω a2 D−1(1 −  
a2

b2)−1 . (8)

It has been demonstrated1 that it is convenient to introduce a new variable, u, as

u  =  y f(x) , (9)

where f(x) is an approximation of the gradient of concentration C at the active surface.
Thereby the function (y,x) → C(y,x) transforms to

(u,x) → C




u
f(x),x




 = C

~
(u,x)

and Eq. (7) transforms to

B 



1  −  




1 +  

u
f(x)





−2 





u 

f ′(x)
f(x)  ∂C

~
 ⁄ ∂u  +  ∂C

~
 ⁄ ∂x




   =   f2(x) ∂2C

~
 ⁄ ∂u2  +

+  f(x) 

1 +  

u
f(x)





−1
 ∂C

~
 ⁄ ∂u  +  A 




1 +  

u
f(x)





−2





u 

f ′(x)
f(x)





2
∂2C

~
 ⁄ ∂u2  +

+  u f−2(x) (f(x) f ′′(x)  −  (f ′(x))2) ∂C
~

 ⁄ ∂u  +

+  2u 
f ′(x)
f(x)  ∂2C

~
 ⁄ ∂u∂x  +  ∂2C

~
 ⁄ ∂x2


 .

(10)
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The boundary conditions (3a), (3b), (5) now are in the form

C
~

(0,x)  =  0     for     x ∈ 〈 0,1〉 (11a)

∂C
~

 ⁄ ∂u(0,x)  =  0     for     x ∈ 〈 1,2π 
a
m

〉 (11b)

lim
u → ∞

 C
~

(u,x)  =  1     for     x ∈ 〈 0,2π 
a
m

〉 . (12)

The boundary problem (10) – (12) was solved for the asymptotic case of B → ∞ by
the iterative approach. The first iteration C

~
1(u,x) was taken from ref.1

C
~

1(u,x)   =   E0
−1  ∫ 

0

βt

 exp(−s3)ds , (13)

where

E0  =  ∫ 
0

∞
 exp(−s3)ds ,     t  =  u f−1(x) (1 + u f−1(x))−1 =  u (f(x) + u)−1 ,

f(x)  =  k x−1 ⁄ 3 ,     β  =  − 



 
2
3

 B  
f ′(x)
f(x)  





1 ⁄ 3
=  




 
2
9

 
B
x

 




1 ⁄ 3
 . (14)

Further iterations were defined by the equation

f2(x) ∂2C
~

n
 ⁄ ∂u2  +  






 f(x) 


1 + 

u
f(x)





−1

+  B u  
f′(x)
f(x)  







1 +  

u
f(x)





−2

−  1









   ∂C

~
n
 ⁄ ∂u   =

=   B 



1  −  




1 +  

u
f(x)





−2 


  ∂C

~
n − 1

 ⁄ ∂x  −  A 



1 +  

u
f(x)





−2
  .                    

.  






u  

f ′(x)
f(x)





2

∂2C
~

n − 1
 ⁄ ∂u2  +  u f−2(x) (f(x) f ′′(x)  −  (f ′(x))2)  .

.  ∂C
~

n − 1
 ⁄ ∂u  +  2 u  

f ′(x)
f(x)   ∂2C

~
n − 1

 ⁄ ∂u ∂x  +  ∂2C
~

n − 1
 ⁄ ∂x2




 ,     n ≥ 2 . (15)
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Eq. (15) for function C
~

n of variable u is actually an ordinary differential equation with
parameter x. Solve it for the conditions

C
~

n(0)  =  0 ,     lim
u → ∞

  C
~

n(u)  =  1   and   x ∈  (0,1) . (16)

By solving the problem (15), (16) for n = 2 we obtain the second iteration in the form

C
~

2(u)   =   K ∫ 
0

t

 exp






 ∫ 
0

v

 M(w)dw 






dv  −                                                       

−  ∫ 
0

t

 






 






 ∫ 
0

v

 N(w) exp






−∫ 

0

w

 M(z)dz 






dw 







  exp







 ∫ 
0

v

 M(w)dw 






 






dv , (17)

where quantity t has been introduced by formulas (14) and

M(t)   =   (1 − t)−2 



1  −  t  +  

B
3x

 ((1 − t)2 − 1)  t (1 − t)−1


(18a)

N(t)   =   1 ⁄ (3E0)  exp



−  

2
9

  
B
x

 t3



 



 
2
9

  
B
x7 





1 ⁄ 3
 (1 − t)−4  .

.  



 B xt2 (1  −  (1 − t)2)  +  A (1 − t)2 




t +  

t2

3
  −  

2
9

  
B
x

 t4



 



 . (18b)

The first condition in Eq. (16) was respected here. By using the limiting condition in
Eq. (16) we obtain a formula for the constant K,

K   =   









 1  +  ∫ 

0

1

 






 






 ∫ 
0

v

 N(w) exp






−∫ 

0

w

 M(z)dz 






dw 







  exp







 ∫ 
0

v

 M(w)dw 






 






dv  










 /

The Diffusion Flow to a Rotating Line Electrode 277

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



/ ∫ 
0

1

 exp






 ∫ 
0

v

 M(w)dw 






dv . (19)

It follows from formulas (17), (14) and (9) that

K   =   ∂C2
 ⁄ ∂y(0,x) (20)

which implies that K is an approximation of the gradient of the dimensionless concen-
tration C at the active surface in dependence on variable x.

Detailed calculation (see Appendix) gives an approximation of the gradient of the
dimensionless concentration C in the form

K   ≅    β ⁄ E0 



1  +  

3
4

 E1
 ⁄ E0 β−1  +  9 ⁄ (32 E0) β−2  +

+   
1
8

(E1
 ⁄ E0)2 β−2  +  A ⁄ (30 E0x

2) β−2

 , (21)

where E0 and β are as introduced in formulas (14) and

E1   =   ∫ 
0

∞
 s exp(−s3)ds .

The mathematical model used has a singularity in point x = 0 and so one cannot
expect convergence of the suggested iterative procedure in this point. Therefore, when
calculating the total diffusion flow to the active surface,

Q   =   ∫ 
0

1

 K dx ,

a theoretical formula following from Eq. (21) cannot be obtained. Equation (21), how-
ever, suggests that the semiempirical formula

Q   =   



 
3
4

 




1 ⁄ 3
E0

−1 B1 ⁄ 3  +  
3
4

  E1
 ⁄ E0  +  K1 B−1 ⁄ 3  +  K2 A B−1 ⁄ 3 (22)
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can conveniently be introduced.
The empirical constants K1 and K2 are calculated from the numerical results for

various values of the parameters A, B as given later.

Numerical Solution

The standard network method was applied to numerically solve Eq. (7) for convective
diffusion to the line electrode on the region (see Fig. 1)

(y,x) ∈  S  =  〈0,(b − a)/a〉  × 〈0,1〉

for the boundary conditions

C(0,x)  =  0 ,     C((b − a) ⁄ a,x)  =  1 . (23a)

The boundary conditions for x = 0 and x = 1 are determined by the convective diffusion
process and are not known in advance. To obtain acceptable C(y,0) and C(y,1) values
we applied the procedure as follows.

We divided the procedure into stages.

Stage I:

In this stage we solved Eq. (7) consecutively on the regions

FIG. 1
Segmentation of the annulus for nu-
merical treatment
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(y,x) ∈  〈0,(b − a)/a〉 × 〈p − 1,p + 1〉  ,     p = 1, 2, . . ., P.

In the first step, p = 1, the conditions (23a) were extended for x ∈ 〈 0,2〉  and completed
with the conditions

C(y,0)  =  1 ,     C(y,2)  =  1 (23b)

∂C ⁄ ∂y(0,x)  =  0 ,     C((b − a) ⁄ a,x)  =  1     for     x ∈  (1,2〉  . (23c)

We denoted the solution of this problem C1.
In the second step, p = 2, we solved Eq. (7) on the region

(y,x) ∈ 〈 0,(b − a)/a〉 × 〈1,3〉

for the boundary conditions

C(0,1)  =  0 ,     ∂C ⁄ ∂y(0,x)  =  0     for     x ∈  (1,3〉  ,     C((b − a) ⁄ a,x)  =  1          (24a)

C(y,1)  =  C1(y,1) ,     C(y,3)  =  1 . (24b)

In the first condition (24b), the C1(y,1) value calculated in the first step (p = 1) was
used for x = 1. The solution of problem (7), (24a), (24b) was denoted C2.

The subsequent steps of Stage I were analogous. In the p-th step (p > 2), Eq. (7) was
solved for the boundary conditions

∂C ⁄ ∂y(0,x)  =  0 ,     C((b − a) ⁄ a,x)  =  1 ,     x ∈ 〈 p − 1,p + 1〉 (25a)

C(y,p − 1)  =  Cp − 1(y,p − 1) ,     C(y,p + 1)  =  1 ,     y ∈ 〈 0,(b − a) ⁄ a〉 , (25b)

where Cp − 1 is the solution of the boundary problem in the (p − 1)-st step.
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Calculation in Stage I was terminated when the condition

| Cp(y,p) − 1|  <  0.01 ,     y ∈ 〈 0,(b − a) ⁄ a〉 (26)

was satisfied.
This step was denoted P

__
.

Stage II:

In this stage we solved Eq. (7) consecutively on the regions

〈0,(b − a)/a〉 × 〈p − 2,p〉  , p = 1, 2, . . ., P
__

.

The boundary conditions were chosen as follows:

         for y = 0:   C(0,x) = 0 x ∈ 〈 0,1〉 , elsewhere ∂C ⁄ ∂y(0,x) = 0
,

         for y = (b − a)/a:   C((b − a)/a,x) = 1 for any x.

Conditions in the radial direction:

  in the first step (p = 1), C(y,−1) = 1, C(y,1) = C1(y,1),

where C1(y,1) are values obtained in Stage I;

  in the subsequent steps (p > 1), C(y,p − 2) = C
__

p − 1(y,p − 2), C(y,p) = Cp(y,p),

where Cp are values obtained in the p-th step of Stage I and C
__

p − 1 are values obtained
in the (p − 1)-st step of Stage II.

Calculation in Stage II was terminated when condition (26) for C
__

p (p = P
__

) was
satisfied.

In all the subsequent stages we solved the problem on the regions

〈0,(b − a)/a〉 × 〈p − 3,p − 1〉  ,     p = 1, 2, . . ., P
~

proceeding analogously. The last-calculated values in the current or preceding stage
were used when determining the boundary conditions in the radial direction. In these
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stages we tested the values of concentration C for x = 1 in those nodal points of the
network (yi,1) which occurred during the approximate calculation of grad C.

Denote ∆ the difference between the concentrations in the current and preceding
stages. The calculation was terminated if

max
i

 | ∆(yi,1)| < 0.001 .

RESULTS AND DISCUSSION

The problem was solved numerically for all combinations of the following values of
parameters A, B (Eq. (8)):

A = 100, 500, 1 000;     B = 8 000, 15 625, 27 000.

The B values are the numbers 20, 25 and 30 cubed. This was chosen with regard to
Eq. (22), where the overall diffusion flow Q is expressed in cube roots of B. The values
of parameters A, B were chosen so as to obtain a formula with a range of validity wider
than in ref.1.

To obtain diffusion flow values Q as precise as possible, we solved the boundary
problem, for each A, B pair, for three different steps in the radial direction and three
different steps in the tangential direction. This enabled the results to be refined by
applying the two-step Richardson extrapolation. The concentration gradients necessary
to calculate the overall diffusion flow Q were approximated by a five-point differential
formula. The diffusion flow Q was calculated by using Simpson’s formula.

The Q values so obtained for the various A, B pairs are given in Table I.

TABLE I
Total diffusion flow Q

A
B

8 000 15 625 27 000

100 22.824 27.531 32.378

500 29.864 33.762 38.074

1 000  37.124 40.089 43.702
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Using the Q values tabulated we determined the unknown coefficients K1, K2 in the
semiempirical formula (22) by the least squares method. In this formula we have

E0
−1 




 
3
4

 




1 ⁄ 3
  ≅    1.017 ,          

3
4

 E1
 ⁄ E0   ≅    0.425 .

The least squares method was applied to the function

Q1  =  K1 B−1 ⁄ 3 +  K2 A B−1 ⁄ 3 , (27)

where

Q1  =   Q  −  E0
−1 




 
3
4

 




1 ⁄ 3
B1 ⁄ 3 −  

3
4

 E1
 ⁄ E0 .

We obtained K1 ≅  13.604, K2 ≅  0.339.
The resulting semiempirical formula has the form

Q   =   1.017 B1 ⁄ 3 +  0.425  +  13.604 B−1 ⁄ 3 +  0.339 A B−1 ⁄ 3 . (28)

Table II gives the Q values calculated from Eq. (28) and the percent deviations p of
the values from those given in Table I.

Equation (28) demonstrates that the first term, 1.017 B1/3, clearly dominates for ap-
preciably high values of parameter B. This was confirmed by the experimental results
in ref.1 where the values approached B = 106, A = 500.

Inserting those values in Eq. (28) we obtain

Q   ≅    101.745  +  0.425  +  0.136  +  1.694 .

This result illustrates the effect of the individual terms in Eq. (28) for the parameters
used and also confirms that the application of the formula

Q   ≅    1.017 B1/3

is warranted within the region of physical parameters used in ref.1.

The Diffusion Flow to a Rotating Line Electrode 283

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



The importance of Eq. (28) is in the fact that it extends appreciably the range of
validity with respect to the decisive physical parameters. Particularly significant is the
last term, 0.339 A B−1/3, which plays a major role for appreciable values of parameter A,
i.e. for small widths of the line electrode. To suppress the effect of this term as much
as possible it is convenient, when designing the line electrode, to choose a width as
large as possible for a given length. On the other hand, however, the fact must be taken
into account that the boundary effect, viz. the diffusion to the active surface in the
vicinity of the two ends of the electrode, increases with increasing width of the elec-
trode1. This effect fails to be accounted for in the mathematical model solved. To sup-
press the boundary effect the width of the line electrode must be chosen reasonably
low, whereby the last term in Eq. (28) plays a role, particularly for low B values.

APPENDIX

This Appendix demonstrates how Eq. (21) is derived from Eq. (19). The following
quantities in Eq. (19) are consecutively approximated by using Taylor series (functions
M and N are defined in Eqs (18a), (18b)):

∫ 
0

v

 M(w)dw   =   ∫ 
0

v

 



(1 − w)−1 +  

B w
3 x

  (1 − w)−1 −  (1 − w)−3



dw   ≅

≅    v  +   
v2

2
  +   

v3

3
  −   

B
3 x

  



 
2
3

 v2 +  
5
4

 v4 +  
9
5

 v5 

 . (A1)

TABLE II
Total diffusion flow Q calculated from Eq. (28)

A B Q p a

100  8 000 23.147 1.4

500  8 000 29.922 0.2

1 000   8 000 38.390 3.4

100 15 625 27.760 0.8
500 15 625 33.180 −1.7 

1 000  15 625 39.954 −0.3 

100 27 000 32.531 0.5

500 27 000 37.047 −2.7 

1 000  27 000 42.692 −2.3 

a Per cent deviation.
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∫ 
0

1

 exp






 ∫ 
0

v

 M(w)dw 






dv   ≅    β−1(E0 +  E1 β−1 +  

1
2

 E2 β−2 −  
15
8

 E4 β−1 −

−  
27
10

 E5 β−2 +  
1
2

 E2 β−2 −  
15
8

 E5 β−2 +  
225
128

 E8 β−2) ,
(A2)

where

En   =   ∫ 
0

∞
 sn exp(−s3)ds ,          n  =  0, 1, 2, . . .,

          β   =   



 
2
9

  
B
x

 




1 ⁄ 3

(see Eq. (14)).

I   =   ∫ 
0

v

 N(w) exp






 − ∫ 

0

w

 M(z)dz 






dw   ≅                                                                       

≅    
3
2

 E0
−1 




 
1
2

 β4v4 +  β4v5 +  
15
32

 β7v8 +  
3
2

 β4v6 +  
197
120

 β7v9 +  
75

256
 β10v12


  +

+  A ⁄ (3 E0 x
2) 


 
1
2

 βv2 +  
4
9

 βv3 −  
1
5

 β4v5 +  
7
48

 β4v6 −  
5
24

 β7v9 



 . (A3)

∫ 
0

1

 I  exp






 ∫ 
0

v

 M(w)dw 






dv   ≅           

≅    3 ⁄ (2 β E0) 



 
1
3

 E1 +  
3
16

 β−1

  +  A ⁄ (30 E0 x2) β−2 .          (A4)

Inserting all of the approximations in Eq. (19) we obtain formula (21).
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